

SC311 Modeling and Simulation

Lecture 01

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Dr. Ahmed Hagag

Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University.

Email: ahagag@fci.bu.edu.eg

- Course code: SC311
- Course name: Modeling and Simulation
- Level: 3rd Year / B.Sc.
- Instructor: Dr. Ahmed Hagag

What do you expect to get from this course?

Modeling and Simulation

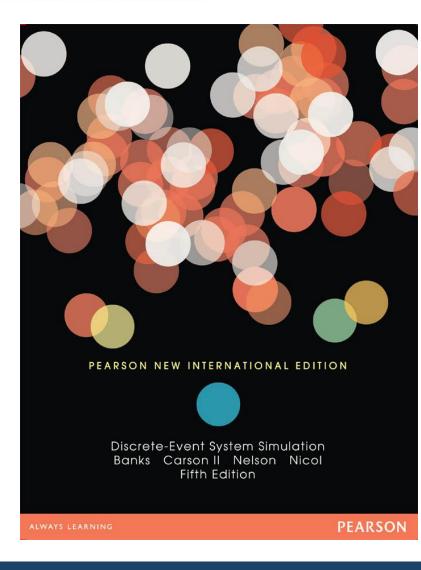
Assessment

Project (1/2)

Activity	Notes
Project	Self-Study

- 7~10 students per group (Send me at: ahagag@fci.bu.edu.eg)
- Due date: 1-3-2023
- Follow up the groups in the lectures.
- Final discussion at the end of the semester.
 - Documentation.
 - Discussion.

Simulation Software


You can find documents and tutorials at this website

https://www.anylogic.com/

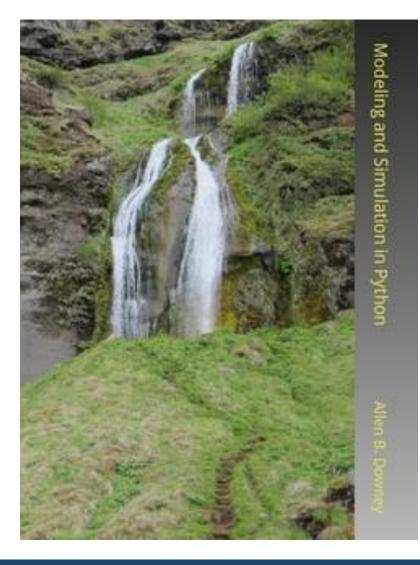
Lectures References (1/4)

Discrete-Event System Simulation

Banks Carson II Nelson Nicol Fifth Edition

Lectures References (2/4)

SIMULATION MODELING ANALYSIS 5°


Simulation Modeling and Analysis

Averill M. Law Fifth Edition

Averill M. Law

Lectures References (3/4)

Modeling and Simulation in Python

Allen B. Downey Version 1.0.2

Lectures References (4/4)

Devendra K. Chaturvedi

Modeling and Simulation of Systems Using MATLAB® and Simulink®

CRC Press

Modeling and Simulation of Systems Using MATLAB and Simulink

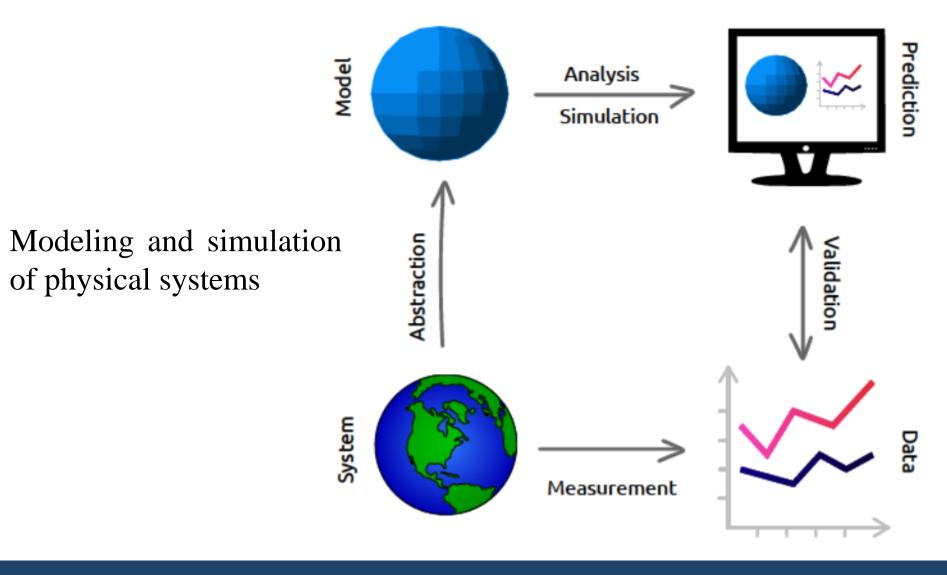
Devendra K. Chaturvedi

This subject provides students with:

- The basic system concept and definitions of system.
- Techniques to model and to simulate various systems.
- The ability to analyze a system and to make use of the information to improve the performance.
- Some basics of Programming.

Course Syllabus

- Chapter 1: Introduction.
- > Chapter 2: Probability as Using in Simulation.
- Chapter 3: Queueing Simulation.
- > Chapter 4: Inventory Simulation.
- ≻ Chapter 5: Random-Number Generation.
- > Chapter 6: Statistical Models in Simulation.
- Chapter 7: Input Modeling.


- General Introduction.
 - ✓ Important Definitions.
 - \checkmark When Simulation is the Appropriate Tool.
 - \checkmark When Simulation is Not Appropriate.
 - ✓ Advantages and Disadvantages of Simulation.
- Areas of Application.

- Systems and System Environment.
- Components of a System.
- Classification of Systems.
- Steps in a Simulation Study.

General Introduction (1/10)

Important Definitions (1/4):

• The **system** is something in the real world we are interested in. Often, it is something complicated, so we must decide which details can be simplified or abstracted away.

Important Definitions (2/4):

- There result of abstraction is a **model** that includes the features we think are essential. A model can be represented in the form of diagrams and equations, which can be used for *mathematical analysis*. It can also be implemented in the form of a computer program, which can run **simulations**.
- A **simulation** is the imitation of the operation of a realworld process or system over time.

Important Definitions (3/4):

- A **model** is a simplification of a real system.
- **Modeling** is the process of representing a system with a specific tool to study its behavior.
- <u>A model can be:</u>
 - > Analytic: when a mathematical approach is feasible.
 - Simulation: model used for complex systems.
 - **Experimental:** when the real system already exists.

Important Definitions (4/4):

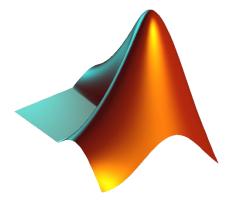
- The result of analysis and simulation can be a **prediction** about what the system will do, an explanation of why it behaves the way it does, or a design intended to achieve a purpose.
- We can validate predictions and test designs by taking measurements from the real world and comparing the data we get with the results from analysis and simulation.

Goal of Modeling and Simulation (1/2):

- A model can be used to investigate a wide verity of "what if" questions about real-world system.
 - Potential changes to the system can be simulated and predicate their impact on the system.
 - Find adequate parameters before implementation.

Goal of Modeling and Simulation (2/2):

- So, simulation can be used as
 - Analysis tool for predicating the effect of changes.
 - Design tool to predicate the performance of new system.
- It is better to do simulation before implementation.



General Introduction (4/10)

Simulation Language

You can use:

- MATLAB®
- Python
- Java
- C/C++
- Others ...

General Introduction (5/10)

Simulation Software

Some of important:

- AnyLogic
- Arena
- AutoMod
- ExtendSim
- Flexsim
- ProModel
- SIMUL8
- Others ...

General Introduction (5/10)

Simulation Software

You can use:

- AnyLogic
- Arena
- AutoMod
- ExtendSim
- Flexsim
- ProModel
- SIMUL8
- Others ...

https://www.anylogic.com/

Use in the project!

General Introduction (6/10)

When Simulation is the Appropriate Tool?

When Simulation is the Appropriate Tool? (1/3)

- Simulation enable the study of internal interaction of a subsystem with complex system.
- Environmental changes can be simulated and find their effects.
- A simulation model help us to gain knowledge about improvement of system.
- Finding important input parameters with changing simulation inputs.

When Simulation is the Appropriate Tool? (2/3)

- Simulation can be used with new design before implementation.
- Simulating different capabilities for a machine can help determine the requirement.
- Risky: Risk involved in experimentation is another factor. In some systems there is a risk of damaging the system, or a risk of life.

When Simulation is the Appropriate Tool? (3/3)

- A plan can be visualized with animated simulation.
- The modern system is too complex that its internal interaction can be treated only by simulation.
- Too expensive: Experimenting with a real system is an extremely costly affair.
 - ➢ For example, the physical experimentation of a complex system like the satellite system is quite expensive and time-consuming.

General Introduction (8/10)

When Simulation is Not Appropriate ?

When Simulation is Not Appropriate?

- When the problem can be solved by common sense.
- When the problem can be solved analytically.
- If it is easier to perform direct experiments.
- If cost exceed savings.
- If resource or time are not available.

Advantages of Simulation (1/2)

- Hypotheses about how or why certain phenomena occur can be tested for feasibility.
- Time can be compressed or expanded to allow for a speed-up or slow-down of the phenomena.
- Insight can be obtained about the interaction of variables.
- Insight can be obtained about the importance of variables to the performance of the system.

Advantages of Simulation (2/2)

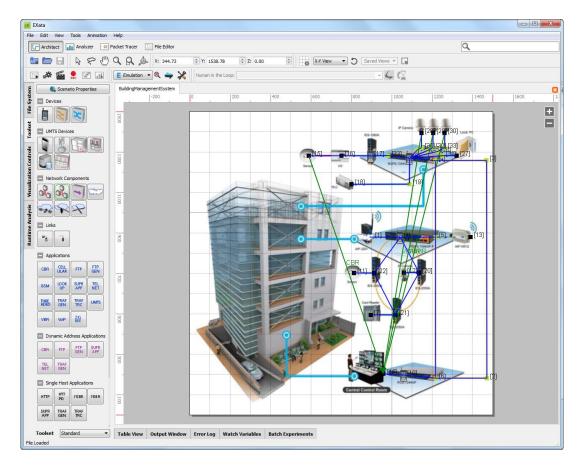
- New hardware designs, physical layouts, transportation systems, and so on can be tested easily.
- A simulation study can help in understanding how the system operates.
- "*What if*" questions can be answered. This is useful in the design of new systems.

Disadvantages of Simulation

- Model building requires special training.
- Simulation results can be difficult to interpret.
- Simulation modeling and analysis can be time consuming and expensive.
- Simulation is used in some cases when an analytical solution is possible.

Areas of Application (1/2)

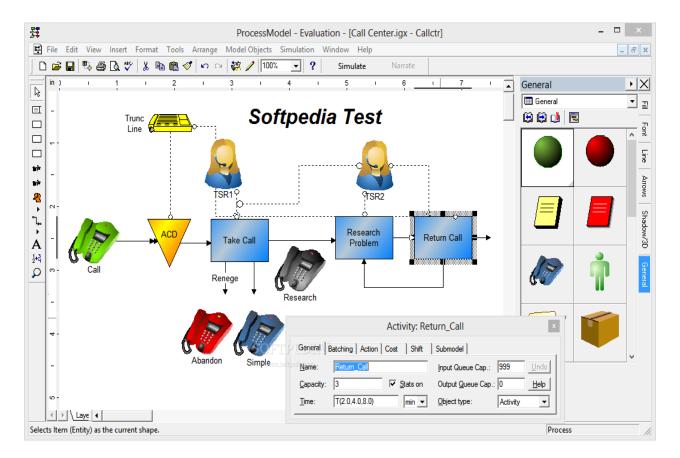
Give me some examples for systems can be simulated.


©Ahmed Hagag

Modeling and Simulation

Areas of Application (2/2)

1. Networks


2. Military Applications

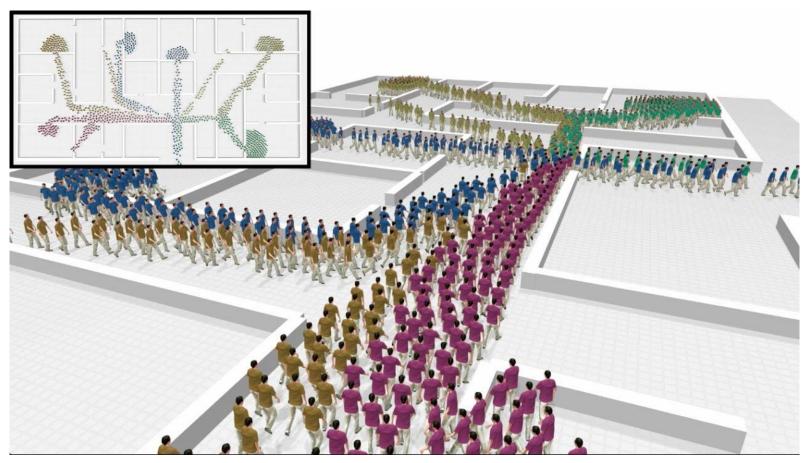
©Ahmed Hagag

3. Call Centers

4. Manufacturing Applications

©Ahmed Hagag

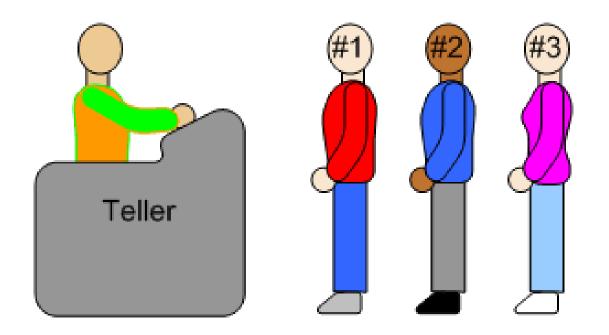
5. HealthCare



6. Road Traffic

7. Crowd Flow

8. Airport



9. Car Garage

10. Banking

11. Trains Stations

12. Gas Station

12. Highway Junction

©Ahmed Hagag

13. Automated Guided Vehicles

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MG0s6geFJmdvD0IN5zE89-Hq8lj

Lecture #1: <u>https://www.youtube.com/watch?v=krdDck_2Mtw&list=PLxlvc-</u> <u>MGDs6geFJmdvD0IN5zE89-Hq8lj&index=1</u>

> https://www.youtube.com/watch?v=R02LYmavJT0&list=PLxlvc-MG0s6geFJmdvD0IN5zE89-Hq8lj&index=2

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg